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A looped functional method to design state feedback
controllers for Lurie networked control systems

Wei Wang and Hong-Bing Zeng

Dear Editor,

This letter deals with the stabilization of Lurie networked control
systems with network-induced delays (NID). By constructing a two-
sided looped Lyapunov functional, a sufficient condition is derived to
ensure the absolute stability of the resultant closed-loop system under
a state feedback controller. Then, based on this condition, a cone
complementary linearisation (CCL) iterative algorithm is presented to
design state feedback controller. It is shown via a numerical example
that the proposed method can deliver less conservative results as well
as fewer iterations if compared with existing ones.

With the rapid development of computer science and communi-
cation technology, networked control systems (NCSs) have gained
wide attention due to advantages such as low cost, simple diagnosis
and maintenance, flexibility of operation. In an NCS, data exchange
among the devices is implemented through a shared network medium.
Consequently, NID like transmission delays in the S-C and C-
A channels cannot be avoided. These delays may result in the
degradation of system performance and even destabilize the NCS
[1]–[3]. Therefore, research interests on this topic are usually focused
on designing a certain controller to ensure that the NCS is stable if
network-induced delays vary within a proper range [4].

For example, in [5], a stability condition is presented with an
assumption that the upper bound of NID is no more than the
sampling period. When the upper bound of NID is larger than the
sampling period, a novel model is proposed in [6] based on an
input delay approach. In [7], by introducing some free matrices
to reflect the relationship between NID and its upper bound, less
conservative stability conditions for NCSs are obtained. However,
the literature aforementioned above focuses on the linear NCSs rather
than nonlinear ones that are more practical.

In [8], a kind of nonlinear NCS, namely Lurie NCS, is investigated
based on the input delay approach and its stability is analyzed, in
which some useful terms are ignored in the derivative of the chosen
Lyapunov functional. By retaining those ignored terms and employing
an improved free-weighting matrix method, less conservative condi-
tions than [8] are proposed in [9]. Further improvement can be found
in [10]. However, those results aforementioned above do not take NID
into account, leading to limited application scopes of them.

Usually, a stability criterion for a closed-loop NCS is a set of
nonlinear matrix inequalities since the control gain is unknown.
To solve the control gain, there are three methods available. The
first one is called a parameter-tuning method [6]. By setting two
matrix variables to be linear with a tuning parameter, the nonlinear
matrix inequalities are turned into LMIs with tuning parameters. Then
suitable control gains can be calculated if the LMIs are feasible
by tuning those parameters. The second one is based on some
skills to enlarge a nonlinear term such that the nonlinear matrix
inequalities are linearized [8]. Nevertheless, it is well known that
these two methods just produce conservative results. The third method
is the CCL iterative algorithm [11], by which control gains can be
designed with less conservativeness after finite iterations. Whereas,
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the stopping conditions involved in the iterative algorithm [11] are
somewhat strict. By revising the stopping condition, an improved
iterative algorithm is developed in [7]. This method is employed to
design suitable controllers for Lurie NCSs in [9] and [10].

In this letter, a looped functional method is used to deal with
the stabilization of a Lurie NCS with NID. By constructing a two-
sided looped functional, a novel stability criterion is presented for
the closed-loop Lurie NCS. Then, by introducing a CCL algorithm,
a stabilizing state-feedback controller can be designed. It is shown
through a numerical example that the proposed method can provide
less conservative results and the number of iterations is reduced.

Notation: Throughout the paper, Sn(Sn+) is the set of n× n real
(positive-definite) symmetric matrices; Symmetric terms in a symmet-
ric matrix are represented by the symbol ‘∗’ and He{U} = U +UT .
Problem Statement: Consider the following system:

ẋ(t) = Ax(t) + Bu(t) +Dσ(t)
z(t) = Cx(t)
σ(t) = −$(t, z(t))

(1)

where x(t) ∈ Rn and u(t) ∈ Rm are state vector and input vector,
respectively. z(t) ∈ Rp is the measured output. $(t, z(t)) is a
piecewise continuous nonlinear function that is global Lipschitz in
z(t), $(t, 0) = 0, and satisfies

$T (t, z(t))[$(t, z(t))− Γz(t)] ≤ 0 (2)

for ∀t ≥ 0 and ∀z(t) ∈ Rp, where Γ is a real diagonal matrix. The
set of all functions that satisfy the sector condition above is denoted
by F[0,Γ].

Under Assumption 1 presented in [6], the digital control law for
networked control systems may be represented as

u(t) = Kx(tk), t ∈ [tk, tk+1) (3)

Then, the closed-loop system can be represented as
ẋ(t) = Ax(t) + BKx(tk) +Dσ(t), t ∈ [tk, tk+1)
z(t) = Cx(t)
σ(t) = −$(t, z(t))

(4)

where {t0, t1, t2, · · · , tk, · · · } is a time sequence satisfying tk+1 −
tk = hk ∈ [η, η].

Remark 1: By defining τ(t) = t − tk, system (4) can be repre-
sented as the following system with time-delay.

ẋ(t) = Ax(t) + BKx(t− τ(t)) +Dσ(t), t ∈ [tk, tk+1) (5)

where τ(t) is the network-induced delay with τ(t) ≤ η. It is observed
that τ̇(t) = 1 for t 6= tk, yet this condition is ignored in [8]–[10],
leading to conservative stability conditions.

In the sequel, we introduce the following lemma, which is indis-
pensable in deriving the main results.

Lemma 1: [12] Let x be a differentiable signal in [α, β] → Rn.
For any matrices R ∈ Sn+, and N1,N2 ∈ Rm×n, the following
inequality holds:

−
β∫
α

ẋT (s)Rẋ(s)ds ≤ ξ̄T {He{N1(ē1 − ē2)

+ N2(ē1 + ē2 − 2ē3)}+ (β − α)×

(N1R
−1N T

1 +
1

3
N2R

−1N T
2 )}ξ̄ (6)

where ξ̄ ∈ Rm and ēi(i = 1, 2, 3) are entry matrices such that
x(β) = ē1ξ̄, x(α) = ē2ξ̄,

1
β−α

∫ β
α
xT (s)ds = ē3ξ̄.
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Main Results: For simplifying the description of vectors and matri-
ces, we denote

ξ(t) =col

{
x(t), x(tk), x(tk+1),

∫ t

tk

x(s)ds,

∫ tk+1

t

x(s)ds,∫ t

tk

x(s)

t− tk
ds,

∫ tk+1

t

x(s)

tk+1 − t
ds, σ(t)

}
and ei, i ∈ {1, 2, · · · , 8} are row-block vectors such that x(t) =
e1ξ(t), x(tk) = e2ξ(t), · · · , σ(t) = e8ξ(t).

First, consider Lurie NCS (4) with a given K. By using looped-
functional method, the following stability condition is obtained.

Theorem 1: Given scalars η and η with η ≥ η ≥ 0, and the
controller gain K, the closed-loop system (4) with nonlinear function
$(·) ∈ F [0,Γ] is absolutely stable if there exist P ∈ Sn+, Q1,∈
Rn×n, Q2,∈ S3n, R1,R2 ∈ Sn, Y1, Y2 ∈ R(7n+p)×n,M,N ∈
R3n×2n, such that, for hk ∈ [η, η], the inequalities (7) and (8) hold

Φ̄1(hk) =

Φ0 + hkΦ1

√
hkΠT

4M
√
hkΠT

1R1

∗ −R̄2 0
∗ ∗ −R1

 < 0 (7)

Φ̄2(hk) =

Φ0 + hkΦ2

√
hkΠT

3N
√
hkΠT

1R2

∗ −R̄1 0
∗ ∗ −R2

 < 0 (8)

where

Φ0 = He{eT1 PΠ1−eT1Q1e4 +eT5Q1e1}−He{Y1e4 +Y2e5 +
eT8 e8 + eT8 ΓCe1}+ He{ΠT

3NΠ5 + ΠT
4MΠ6},

Φ1 = He{Y1e6} −ΠT
2Q2Π2,Φ2 = He{Y2e7}+ ΠT

2Q2Π2,

Π1 = Ae1 + BKe2 +De8,Π2 =
[
eT2 eT3 eT4 + eT5

]T
,

Π3 =
[
eT3 eT1 eT7

]T
,Π4 =

[
eT1 eT2 eT6

]T
,

Π5 =

[
e3 − e1

e3 + e1 − 2e7

]
,Π6 =

[
e1 − e2

e1 + e2 − 2e6

]
,

R̄1 = diag{R1, 3R1}, R̄2 = diag{R2, 3R2}.
Proof. Choose a Lyapunov functional candidate as

V (xt) = V0(t) +W(t), t ∈ [tk, tk+1) (9)

where V0(t) = xT (t)Px(t) and

W(t) = 2

∫ tk+1

t

xT (s)dsQ1

∫ t

tk

x(s)ds

+ (tk+1 − t)(t− tk)ζTQ2ζ

− (t− tk)

∫ tk+1

t

ẋT (s)R1ẋ(s)ds

+ (tk+1 − t)
∫ t

tk

ẋT (s)R2ẋ(s)ds

with P ∈ Sn+, Q1,∈ Rn×n, Q2,∈ S3n, R1,R2 ∈ Sn to be
determined and ζ = col

{
x(tk), x(tk+1),

∫ tk+1

tk
x(s)ds

}
.

Calculating the derivative of V (xt) yields

V̇ (t) = 2xT (t)Pẋ(t)− 2xT (t)Q1

∫ t

tk

x(s)ds

+ 2

∫ tk+1

t

xT (s)dsQ1x(t) + (tk+1 − t)ζTQ2ζ

− (t− tk)ζTQ2ζ + (t− tk)ẋT (t)R1ẋ(t)

+ (tk+1 − t)ẋT (t)R2ẋ(t)−
∫ tk+1

t

ẋT (s)R1ẋ(s)ds

−
∫ t

tk

ẋT (s)R2ẋ(s)ds (10)

Denote ϑ1 = −
∫ tk+1

t
ẋT (s)R1ẋ(s)ds and ϑ2 =

−
∫ t
tk
ẋT (s)R2ẋ(s)ds. It follows from Lemma 1 that

ϑ1 ≤ξT (t)[(tk+1 − t)ΠT
3NR̄

−1
1 NTΠ3 + He{ΠT

3NΠ5}]ξ(t) (11)

ϑ2 ≤ξT (t)[(t− tk)ΠT
4MR̄−1

2 MTΠ4 + He{ΠT
4MΠ6}]ξ(t) (12)

for any matrices M,N ∈ R3n×2n.
For any matrices Y1, Y2 ∈ R(7n+p)×n, the following zero equa-

tions are true

0 = 2ξT (t)Y1((t− tk)e6 − e4)ξ(t) (13)

0 = 2ξT (t)Y2((tk+1 − t)e7 − e5)ξ(t) (14)

It follows from (2) that

0 ≤ −2ξT (t)[eT8 e8 + eT8 ΓCe1]ξ(t) (15)

Adding the right sides of (13)–(15) to (10) and applying (11) and
(12) yield

V̇ (xt) 6 ξT (t)

[
t− tk
hk

Φ̄1(hk) +
tk+1 − t
hk

Φ̄2(hk)

]
ξ(t), (16)

where

Φ̄1(hk) = Φ0 + hkΦ1 + hkΠT
1R1Π1 + hkΠT

4MR̄−1
2 MTΠ4,

Φ̄2(hk) = Φ0 + hkΦ2 + hkΠT
1R2Π1 + hkΠT

3NR̄
−1
1 NTΠ3.

Thus, if Φ̄1(hk) < 0 and Φ̄2(hk) < 0, which are, respectively,
equivalent to (7) and (8) in the sense of the Schur complement,
V̇ (xt) < −ε‖x(t)‖2 for a sufficiently small ε > 0. Hence, system
(4) is absolutely stable. This completes the proof.

Remark 2: A two-sided looped functional approach was proposed
in [13], which shows great potential in the reduction of conserva-
tiveness. However, the derived condition in [13] is difficult to be
applied to controller design due to the fact that there are a lot of
free matrices coupled with system matrices. Inspired by [13], an
improved looped functional, W(t), is constructed and introduced in
the Lyapunov functional (9). As the characteristics of the networked-
induced delay was considered in the looped functional, the derived
condition is less conservative than [8]–[10].

Next, Theorem 1 is extended to design a stabilizing controller K
for system (4).

Theorem 2: Given scalars η and η with η ≥ η ≥ 0, the closed-
loop system (4) with nonlinear function $(·) ∈ F [0,Γ] is absolutely
stable if there exist matrices L ∈ Sn+, Q̂1,∈ Rn×n, Q̂2,∈ S3n,
Z1,Z2 ∈ Sn, Ŷ1, Ŷ2 ∈ R(7n+p)×n, M̂ , N̂ ∈ R3n×2n, such that, for
hk ∈ [η, η], the following matrix inequalities hold,

Φ̂1(hk) =

Ψ̂0 + hkΨ̂1

√
hkΠT

4 M̂
√
hkΠ̂T

1

∗ −Ẑ2 0
∗ ∗ −Z1

 < 0 (17)

Φ̂2(hk) =

Ψ0 + hkΨ̂2

√
hkΠT

3 N̂
√
hkΠ̂1

T

∗ −Ẑ1 0
∗ ∗ −Z2

 < 0 (18)

where
Ψ̂0 = He{eT1 Π̂1 − eT1 Q̂1e4 + eT5 Q̂1e1} − He{Ŷ1e4 + Ŷ2e5 +
eT8 e8 + eT8 ΓCLe1}+ He{ΠT

3 N̂Π5 + ΠT
4 M̂Π6},

Ψ̂1 = He{Ŷ1e6} −ΠT
2 Q̂2Π2, Ψ̂2 = He{Ŷ2e7}+ ΠT

2 Q̂2Π2,
Π̂1 = ALe1 + BV e2 +De8, Ẑ1 = diag{LZ−1

1 L, 3LZ−1
1 L},

Ẑ2 = diag{LZ−1
2 L, 3LZ−1

2 L},
with Πi, i ∈ {2, 3, · · · , 6} being defined in Theorem 1. Moreover,
the controller gain is obtained by K = V L−1.

Proof. Donate

Λ1 = diag{P−1, P−1, P−1,P−1,P−1,P−1,P−1, I},
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Λ2 = diag{P−1,P−1,R−1
1 },Λ3 = diag{P−1,P−1,R−1

2 },
Λ4 = diag{P−1, P−1, P−1},Λ5 = diag{P−1, P−1},

Pre- and post-multiply Φ̄1(hk) by diag{Λ1, Λ2}, and Φ̄2(hk) by
diag{Λ1, Λ3}, respectively. Make the following changes on the
variables,

L := P−1, Q̂1 := P−1Q1P−1, Q̂2 := Λ4Q2Λ4,

Zi := Ri−1, Ŷi := Λ1YiP−1, i ∈ {1, 2},
M̂ := Λ4MΛ5, N̂ := Λ4NΛ5, V := KP−1.

then inequalities (17) and (18) are derived. This completes the proof.
Note that there are nonlinear terms LZ−1

2 L and LZ−1
1 L in (17)

and (18). Thus, the conditions given in Theorem 2 cannot be directly
implemented by using existing numerical software. The following
CCL algorithm is presented to deal with this non-convex problem.

Define two new variables U1 and U2 such that U1 ≤ LZ−1
1 L and

U2 ≤ LZ−1
2 L. Replace the conditions (17) and (18) with

Φ̂1(hk) =

Ψ̂0 + hkΨ̂1

√
hkΠT

4 M̂
√
hkΠ̂T

1

∗ −diag{U2, 3U2} 0
∗ ∗ −Z1

 < 0 (19)

Φ̂2(hk) =

Ψ0 + hkΨ̂2

√
hkΠT

3 N̂
√
hkΠ̂T

1

∗ −diag{U1, 3U1} 0
∗ ∗ −Z2

 < 0 (20)

and
Ui ≤ LZ−1

i L, i = 1, 2. (21)

Notice that (21) is equal to U−1
i −L

−1ZiL−1 ≥ 0. By the Schur
complement, it is equivalent to[

U−1
i L−1

L−1 Z−1
i

]
≥ 0, i = 1, 2 (22)

Thus, by introducing new variables P, Hi, Ri, i = 1, 2, the original
conditions (17) and (18) are represented as (19), (20) and[

Hi P
P Ri

]
≥ 0,P = L−1, Hi = U−1

i , Ri = Z−1
i , i = 1, 2.

Then, this non-convex problem can be transformed to become the
following LMI-based nonlinear minimization problem:

Minimize Tr
{
LP +

2∑
i=1

(UiHi + ZiRi)
}

Subject to (19), (20) and[
Hi P
P Ri

]
≥ 0,

[
L I
I P

]
≥ 0,[

Ui I
I Hi

]
≥ 0,

[
Zi I
I Ri

]
≥ 0, i = 1, 2. (23)

Algorithm 1: Design the gain K with the maximum ηmax.
Step 1 Choose sufficiently small initial η and η with η ≥ η ≥ 0 such

that there exists a set of feasible solution to (19), (20) and (23).
Set ηmax = η.

Step 2 Find a feasible set (P0, L0,U10,U20, H10, H20,Z10,Z20,
R10,R20, V ) satisfying (19), (20) and (23).

Step 3 Solve the following LMI problem:

Minimize Tr
{ 2∑
i=1

(UikHi + UiHik + ZikRi + ZiRik)

+ LPk + LkP
}

subject to (19), (20) and (23).

Set Lk+1 = L, Pk+1 = L−1, Ui(k+1) = Ui, Hi(k+1) =
U−1
i , Zi(k+1) = Zi, Ri(k+1) = Z−1

i , i = 1, 2.
Step 4 If LMIs (7) and (8) hold with the controller gain K obtained

in Step 3, then set ηmax = η, increase η to some extent and

return to Step 2. If (7) and (8) hold within a given times of
iteration, then exit. Otherwise, set k = k+ 1 and go to Step 3.

Numerical example: This section provides a numerical example to
verify the efficiency of the proposed approach.

Example 1: Consider system (1) with

A =

[
0 1
1 −2

]
, B =

[
1
0

]
, C =

[
1 −0.5

]
, D =

[
0
1

]
,

$(·) ∈ F [0, 1].

It is reported in [8]–[10] that system (4) is stable for η = 1.2841 with
the controller gain K = [−0.5324 −0.2419] in [8], and η = 1.5250
with K = [−0.5347 − 0.2469] after 84 times of iteration in [9],
and η = 1.5279 with the controller gain K = [−0.5296 − 0.2532]
after 39 times of iteration in [10]. For the purpose of comparison, set
η = 0. By applying Algorithm 1, it is obtained that η = 2.4558 with
K = [−0.5858 − 0.2074] after 29 times of iteration. It is obvious
that the approach presented in this paper can yield less conservative
results with fewer iterations in comparison with [8]–[10].
Conclusion: This letter has investigated the problem of stabilizing
Lurie NCSs. Based on a looped function method, an improved
stability condition for the closed-loop Lurie NCSs has been formu-
lated. Then, a CCL algorithm has been presented to design suitable
state feedback controllers. Finally, a numerical example has been
carried out to demonstrate the effectiveness of the proposed method.
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